Mathematical Economics Moseidjord

SAMPLE PROBLEMS RECOMMENDED FOR FINAL PREPARATION.

USE OF THE DERIVATIVE IN ECONOMICS

A firm has the demand function 22 - 0.5 Q - P = 0 and the average cost function $AC = \frac{1}{3}Q^2 - 8.5 Q + 50 + 90/Q.$

Find the level of output which maximizes (a) total revenue and (b) total profits.

.

(a) What combination of goods x and y should a firm produce to minimize costs when the joint cost function is $c = 6x^2 + 10y^2 - xy + 30$ and the firm has a production quota of x + y = 34? (b) Estimate the effect on costs if the production quota is reduced by one

刻

(a) What output mix should a profit-maximizing firm produce when its total profit function is $\pi = 80x - 2x^2 - xy - 3y^2 + 100y$ and its maximum output capacity is x + y = 12?

(b) Estimate the effect on profits if output capacity is expanded by one unit.

16)

A rancher faces the profit function

$$\pi = 110x - 3x^2 - 2xy - 2y^2 + 140y$$

where x = sides of beef and y = hides. Since there are two sides of beef for every hide, it follows that output must be in the proportion

$$\frac{x}{2} = y$$
 $x = 2y$

max IT with

At what level of output will the rancher maximize profits?

4

. CONSTRAINED OPTIMIZATION OF A GENERALIZED COBB-DOUGLAS FUNCTION

Given a production function $q = K^{0.4}L^{0.5}$ subject to a budget constraint of \$108 when $P_K = 3$ and $P_L = 4$, the Lagrange function for optimization is

$$Q = K^{0.4}L^{0.5} + \lambda(3K + 4L - 108)$$

Given a production function $q = K^{0.3}L^{0.5}$ subject to the constraint 6K + 2L = 384, find the maximum output subject to the constraint.

CALCULUS OF MULTIVARIABLE FUNCTIONS IN ECONOMICS

(a) Minimize costs for a firm with the cost function $c = 5x^2 + 2xy + 3y^2 + 800$ subject to the production quota x + y = 39. (b) Estimate additional costs if the production quota is increased to 40.

197

A monopolistic firm has the following demand functions for each of its products x and y:

$$x = 72 - 0.5 P_{x} \tag{6.46}$$

$$y = 120 - P_{y} {}^{\circ} {}^{\circ} {}^{\circ} {}^{\circ} {}^{\circ}$$

The combined cost function is $c = x^2 + xy + y^2 + 35$ and maximum joint production is 40. Thus, x + y = 40. Find the profit-maximizing level of (a) output, (b) price, and (c) profit.

(a) Maximize utility $u = Q_1Q_2$, when $P_1 = 1$, $P_2 = 4$, and one's budget, B = 120. (b) Estimate the effect of a one-unit increase in the budget.

(a) Maximize utility $u = Q_1Q_2$, subject to $P_1 = 10$, $P_2 = 2$, and B = 240. (b) What is the marginal utility of money?

Maximize utility $u = Q_1Q_2 + Q_1 + 2Q_2$, subject to $P_1 = 2$, $P_2 = 5$, and B = 51.